長期監測吸積驅動毫秒波雲 SAX J1808.4-3658 **之時變性質** ^{蔡兆陽、周翊} 國立中央大學天文研究所

摘要

本論文使用 1998-2005 年 RXTE 的觀測數據,針對第一個被發現的吸積驅動 毫秒波霎(Accretion-powered millisecond pulsar) SAX J1808.4-3658,利用它在 1998、2000、2002 與 2005 年爆發時之 RXTE 的觀測資料做長時間之監測,以求 得軌道週期的演化,以及找尋吸積力矩(Accretion torque)。為了求出這幾年最好 的自轉與軌道參數,我們先利用了軌道運動造成的都卜勒效應求出參數初步值, 再利用此參數做相位分析(我們把光子抵達時間對一個考慮中子星自轉與軌道的 變動頻率做疊合來得到相位)以獲得最佳的參數值,我們在 1998 年與 2002 年測 得一致的投影軌道半徑(projected radius) $a \sin i$ 分別是 62.814(2) lt-ms 與 62.811(2) lt-ms,除此之外我們也測量到這兩年的軌道週期變化率(Orbital period derivative) $爲 P/p = (7\pm4) \times 10^8 \text{ yr}^{-1},這和典型低質量 X 光雙星的軌道週期變化率 10⁻⁷ <math>\sim 10^{-8} \text{ yr}^{-1}$ 一致,不過 2000 年與 2005 年的爆發因為都是迷你爆發,使我們無法偵測到明顯 的脈衝(pulsation)現象,因此無法得到更精確的軌道週期變化率,有趣的是我們 在 1998 年測到自轉變慢的吸積力矩-3.15(1) $\times 10^{-12} \text{ Hz/s}$,這個值比典型理論值 ($\sim 10^{-14} \text{ Hz/s}$)大兩個數量級。

Long-term monitoring for the timing properties of the accretion-powered millisecond pulsar SAX J1808.4-3658

Chao-Yang Tsai, Yi Chou

Institute of Astronomy, National Central University

Abstract

We present our analysis results of the spin and orbital properties of the first discovered accretion-powered millisecond pulsar SAX J1808.4-3658 observed by Rossi X-ray Timing Explorer (RXTE) during its 1998 and 2002 outbursts. The event arrival times are initially folded with an ephemeris consist of the neutron star spin frequency evolution plus the effect from the circular orbital motion and the parameters are then further refined according to the variation of the pulse phase. We obtain the binary barycenter neutron star spin frequency of v = 400.975210324(2) Hz, the orbital period of P_{orb} = 7249.158(1)s and the projected radius $a \sin i = 62.811(2)$ lt-ms from 2002 data. For the 1998 outburst, we get consistent projected radius of $a \sin i = 62.814(2)$ lt-ms

but significantly different orbital period ($P_{orb} = 7249.1558(9)s$), which indicates that the orbital period derivative is ~ (7 ± 4) × 10⁻⁸yr⁻¹. No pulsation is significant detected for 2000 and 2005 outbursts due to their low fluxes. In addition, the pulse phase variation of 1998 outburst shows a large spin-down rate of $\dot{v} = -3.15(1) \times 10^{-12}$ Hz s⁻¹, about a factor of 100 larger than the theoretical expectation value (~10⁻¹⁴ Hz s⁻¹), whereas no clear spin frequency derivative during 2002 outburst.

關鍵字 (Keywords): 低質量 X 光雙星系統 (Low mass X-ray binary)、吸積驅動毫 秒波霎 (Accretion-powered millisecond pulsar)、千赫茲準週期震盪 (Kilo-Hertz Quasi periodic oscillation)、爆發準週期震盪 (Burst Quasi periodic oscillation)

Received : 2006.08.09; accepted: 2006.10.05

1、緒論:

SAX J1808.4-3658 是第一個被發現的吸積 驅動毫秒波霎(Accretion-powered Millisecond pulsar),雖然在 1996 年就因為爆發(outburst) 而被望遠鏡 BeppoSAX 所發現(in't Zand et al. 1998),不過當時並未發現它的波霎現象,1998 年再度爆發時,RXTE 對它做了觀測,由於 RXTE 的高時間解析度及靈敏度,發現了它是 一個毫秒波霎,這是第一次在低質量 X 光雙星 (Low mass X-ray binary, LMXB)裡觀測到毫 秒波霎,因而證實毫秒波霎形成的「再循環理 論(recycle model)」(Bisnovatyi-Kogan et al. 1974)(演化到末期轉的很慢的中子星借由吸積 伴星物質而獲得角動量重新被加速)。

其自轉週期為 2.5ms (Wijnands & van der Klis 1998),再經由波霎與雙星軌道耦合之效 應,得出其軌道週期為 2 小時 (Chakrabarty & Morgan, 1998),主星為中子星 (Neutron star; NS),伴星可能為白矮星 (White dwarf; WD)、 低質量主序星 (Chakrabarty & Morgan, 1998) 或是棕矮星 (Brown dwarf) (Bildsten et al. 2001),距離地球大約 2.5kpc (in't Zand et al. 2001),SAX J1808.4-3658 除了在 1998 年爆發 外,分別在 2000 年、2002 年、2005 年也發生 爆發,RXTE 對上述之四次爆發都做了觀測。

SAX J1808.4-3658 除了是軟 X 光暫現星 (Soft X-ray transient; SXT)外,還有其它有趣 的特性,它還被觀測到干赫茲準週期震盪 (Kilo-Hertz Quasi periodic oscillation; kHz QPO)(Wijnands et al., 2003)與爆發準週期震 盪(Burst Quasi periodic oscillation; Burst QPO) (Chakrabarty et al. 2003),因而第一次證實爆 發準週期震盪頻率就是中子星自轉頻率,如圖 一所示。

圖一:此圖為 SAX J1808.4-3658 在 2002 年爆發時的功率頻 譜對時間的演化圖,虛線代表波雲本身的自轉頻率 401Hz,而在虛線上的等高線爲波霎的爆發準週期震 盪功率頻譜。

本研究即使用了RXTE/PCA 四次的觀測資 料做研究,主要有三個目的:(1)找出這四年 最佳的中子星自轉與雙星軌道參數。(2)找出 此系統軌道週期的變化率(Orbital period derivative)。(3)尋找是否存在吸積力矩 (accretion torque)。

2、觀測資料:

為研究 SAX J1808.4-3658 毫秒波霎在 X 光 波段的快速光變,望遠鏡需具備良好的時間解 析度(Timing resolution)及足夠的有效面積 (Collecting area),因此我們選擇了 Rossi X-ray Timing Explorer(RXTE)X 光望遠鏡長時間監 測的數據做為本論文的研究。自 SAX J1808.4-3658 發現以來,RXTE 曾在其隨後的四 次爆發中,分別於 1998 年 4 月 16 日至 5 月 6 日、2000 年 2 月 9 日至 2 月 29 日、2002 年 10 月 16 日至 11 月 25 日以及 2005 年 6 月 21 至 8 月 5 日對 SAX J-1808.4-3658 觀測。所有觀測資 料均在 NASA 的 High Energy Astrophysics Science Archive Research Center(HEASARC)

(<u>http://heasarc.gsfc.nasa.gov/</u>) 。

我們選用的資料模式為具有 125 微秒時間 解析度的 Generic event mode,為提高噪訊比 (signal-to-noise ratio) 我們選用了 2-10 keV 的事件。在經過太陽系質心的修正後 (barycentric correction),我們就可以對資料 更進一步做分析。

3、資料分析:

為了求得精確的軌道與自轉參數,我們先 利用波霎做軌道運動造成我們觀測到的自轉頻 率會有都卜勒變化來求得參數初步值,之後再 利用此初步值加上相位分析法來得到更精確的 參數值。 3.1 軌道都卜勒效應:

為了找出自轉頻率因為都卜勒效應所造成 的變化,我們將檔案做切割(100 秒切成一 份),並求出每一段資料的觀測頻率,利用 Z-test(Buccheri et al. 1983)方法,我們可得到 功率頻率如圖二,圖三顯示了 TJD12568 當天 其中的三個軌道週期,觀測到的頻率變化大約 是形成像正弦的波形。

一·未100 份員杆的 Z-test spectrum, y 軸峰值對值的頻 率就是當時的自轉頻率。

我們將觀測到的頻率隨時間的變化對(1)

式做擬合來得到參數初步值:

$$v(t) = v_0 + A \sin\left[\frac{2\pi(t - T_{\pi/2})}{P_{orb}}\right]$$
(1)

Long-term monitoring for the timing properties of the accretion-powered millisecond pulsar SAX J1808.4-3658

其中 v_0 是波霎本身的自轉頻率, P_{orb} 是波霎的 做軌道運動的公轉週期, $T_{\pi/2}$ 是公轉軌道上的 一個起始參考點, $A = v_0 \times \frac{2\pi a \sin i}{cP_{orb}}$, c為光 速, i 為傾斜角(inclination angle)。

得到最佳的軌道參數後,我們可以把觀測 到波霎的頻率對最好的軌道參數做疊合(fold) 得到圖四:

圖四:把觀測到波霎的頻率對擬合出來最好的軌道參數做 疊合得到的圖。黑色點是「觀測到的頻率」,藍色線 是「擬合出來最佳的模型」曲線,紅色點是把觀測 到的頻率減去最好模型曲線留下來的殘餘值,此殘 餘值已平移至波霎的頻率 400.975 Hz。

3.2 相位分析:

為取得更精確的軌道參數,我們進行了相 位分析。假設中子星繞其雙星質心做圓軌道運 動,由於都卜勒效應,對觀測者而言,相當於 觀測一個孤立的中子星,但以一個"隨時間變動 的頻率"自轉,自轉頻率如(2)式

$$v(t) = v_0 + 2\pi f_{orb} v_0 \frac{a \sin i}{c} \sin[2\pi f_{orb} (t - T_{\pi/2})] \quad (2)$$

因此循環次數(cycle count)可寫成

$$N_{c}(t) = \int v(t)dt$$

$$= v_{0}t - v_{0}\frac{a\sin i}{c}\cos[2\pi f_{orb}(t - T_{\pi/2})] + const$$
(3)

如果我們定義
$$t = T_0$$
時 $N_c = 0$,則:
 $N_c(t) = v_0(t - T_0) - v_0 \frac{a \sin i}{c} \cos[2\pi f_{orb}(t - T_{\pi/2})]$
 $+ v_0 \frac{a \sin i}{c} \cos[2\pi f_{orb}(T_0 - T_{\pi/2})]$
(4)

其中 N_c 為循環次數、t為光子抵達時間、 v_0 為 波霎自轉頻率、 T_0 為波霎的相位參考點。我們 把每個事件對(4)式做疊合,並把光子依其相 位分成 32 等分可得到波形(pulse profile),如 圖五。

為了研究每個 100 秒資料相位變化的情 形,我們選定波形峰值對應的相位值為「相位 基準點」(fiducial point),而且讓波峰位於波霎 的 0 相位上,如果給定的初始參數是百分之百 正確的話,那段的波峰都應該位於 0 相位上, 如果初始參數略有偏差,則峰值相位會隨時間

$$\begin{split} \delta\phi(t) &= N_{c}(t) + N_{c}^{(0)}(t) \\ &= \left\{ -(t - T_{0}^{(0)}) + A^{(0)} \cos\left[2\pi f_{orb}^{(0)}(t - T_{\pi/2}^{(0)})\right] - A^{(0)} \cos\left[2\pi f_{orb}^{(0)}(T_{0}^{(0)} - T_{\pi/2}^{(0)})\right] \right\} \delta\nu_{0} \\ &+ \left\{ \nu_{0}^{(0)} + 2\pi A^{(0)} \nu_{0}^{(0)} f_{orb}^{(0)} \sin\left[2\pi f_{orb}^{(0)}(T_{0}^{(0)} - T_{\pi/2}^{(0)}) + \dot{\nu}^{(0)}(t - T_{\pi/2}^{(0)})\right] \right\} \delta T_{0} \\ &+ \left\{ \nu_{0}^{(0)} \cos\left[2\pi f_{orb}^{(0)}(t - T_{\pi/2}^{(0)})\right] - \nu_{0}^{(0)} \cos\left[2\pi f_{orb}^{(0)}(T_{0} - T_{\pi/2}^{(0)})\right] \right\} \delta A \end{split}$$
(5)
 &+ \left\{ -2\pi \nu_{0}^{(0)} A^{(0)}(t - T_{\pi/2}^{(0)}) \sin\left[2\pi f_{orb}(t - T_{\pi/2}^{(0)})\right] + 2\pi \nu_{0}^{(0)} A^{(0)}(T_{0} - T_{\pi/2}^{(0)}) \sin\left[2\pi f_{orb}(T_{0} - T_{\pi/2}^{(0)})\right] \right\} \delta f_{ori} \\ &+ \left\{ 2\pi \nu_{0}^{(0)} A^{(0)} f_{orb} \sin\left[2\pi f_{orb}(t - T_{\pi/2}^{(0)})\right] - 2\pi \nu_{0}^{(0)} A^{(0)} f_{orb} \sin\left[2\pi f_{orb}(T_{0} - T_{\pi/2}^{(0)})\right] \right\} \delta T_{\pi/2} \end{split}

而變化可用一階展開為(5)式,其中 $N_c(t)$ 代表「實際上的相位」, $N_c^{(0)}(t)$ 代表用「給定初始參數所得到的相位」。 $\delta v_0 \times \delta T_0 \times \delta A \times \delta f_{orb}$ 與 $\delta T_{\pi/2}$ 為「參數實際值」減「給定的參數初始值」的值。

藉由對(5)式做線性擬合(相位誤差是 利用蒙地卡羅模擬法得到),我們可以得到參數 修正量與參數誤差值,不斷的重覆以上步驟, 直到誤差值比修正量小一個數量級為止。以上 我們是考慮最基本的模型(圓形軌道與固定的 自轉頻率),因此我們還要測量離心率與頻率高 階項變化是否存在。

3.3 1998年與2002年資料分析結果:

我們把上述的分析方法先用於 2002 年資 料上,結果得到前八小時相位隨時間做變化的 關係(如圖六):

圖六:2002年前八小時資料之相位隨時間變化關係圖,因 爲給定的初始參數值(由軌道都卜勒效應得之)不 夠準確而造成此變化。

經過不斷修正後得到最佳的參數時,相位 的變化如圖七(最佳參數請見表一)。除此之 外,自轉頻率的一階變化率與離心率均無法測 量出來。

同樣分析方法應用於 1998 年資料,結果 無論我們怎麼修正,相位的變化都呈現二次曲 線(請見圖八),因此我們在模型中加入;項 $\left(\left\{-\frac{1}{2}(t-T_0)^2\right\}\delta\dot{v}\right)$,而得到較合理的參數,相 位均在 0 相位上,如圖九。

圖七:2002年觀測資料事件對「最佳的參數值」 疊合所得 到的相位,明顯看出相位都位於 0 相位上。

副九:在1998年的資料中,富我们加入目轉頻平愛化平レ 於模型内,波霎的相位在0相位上。

最後我們除了得到最好的自轉與軌道參 數外,也測量出自轉頻率的一階變化率,至於 頻率的高階變化率與離心率都無法測量出來, 詳細結果請見表一。由此表我們可以看出 1998 長期監測吸積驅動毫秒波霎 SAX J1808.4-3658 之時變性質 Long-term monitoring for the timing properties of the accretion-powered millisecond pulsar SAX J1808.4-3658

Time of observation	1998	2002
Frequency (Hz)	400.975197702(8)	400.975210324(2)
$a\sin i$ (lt-s)	62.814(2)	62.811(2)
Orbit period (sec)	7249.1558(9)	7249.158(1)
Epoch of 90° mean longitude (MJD)	50919.6811035(8)	52563.074994(1)
Mass function $(10^{-5}M_{\odot})$	3.7798(7)	3.7792(8)
χ^2 / d.o.f.	1892 / 1490	2542 / 2270
Eccentricity	$< 1.3 \times 10^{-4} (2\sigma)$	$< 1.4 \times 10^{-4} (2\sigma)$
Pulse frequency derivative (Hz/s)	-3.15(1)×10 ⁻¹²	$< 2.1 \times 10^{-14} (2\sigma)$
Orbital period derivative (yr ⁻¹)	$\dot{P}/P \sim (7\pm 4) \times 10^{-8}$	

表一: SAX J1808.4-3658 於 1998 與 2002 年最好的自轉與軌道參數。

表二:已知軌道週期變化率之雙星系統。

Object Name	P_{orb} (hr)	\dot{P}_{orb}/P_{orb} (yr^{-1})	Reference
4U 1820-30	0.19	-3.74×10 ⁻⁸	Chou et al. (2001)
EXO 0748-676	0.83	1.62×10 ⁻⁷	Wolff et al. (2002)
Cyg X-3	4.82	1.05×10 ⁻⁶	Singh et al. (2002)
X 1822-371	5.57	3.4×10 ⁻⁷	Hellier et al. (1990)
X 2127+119	17.1	9.0×10 ⁻⁷	Hellier et al. (1998)
Her X-1	40.8	-1.32×10 ⁻⁸	Deter et al. (1991)
X 1916-053	0.83	1.62×10 ⁻⁷	Hu et al. (2005)
SAX J1808.4-3658	2.01	7×10 ⁻⁸	This paper

年與 2002 年的軌道週期並不一致,因為我們量 測 到 此 系 統 的 軌 道 週 期 變 化 率 $\dot{P}/P \sim$ (7±4)×10⁻⁸ yr⁻¹,此數量級與典型低質量 X 光雙 星的軌道週期變動量 ($\dot{P}_{orb}/P_{orb} \sim 10^{-7} \sim 10^{-8}$ yr⁻¹) 一致 (請參閱表二)。

對於 2000 年與 2005 年資料,因為爆發的 強度均比 1998 年與 2002 年爆發的強度小十 倍,所以我們無法量測到脈衝,因此無法使軌 道週期變化率値精確,最後我們只好捨棄。

4、討論:

4.1 軌道週期變化率

目前有七個 LMXB 系統曾測量到軌道週期 變化率,分別是:4U 1820-30、EXO 0748-676、 Cyg X-3、X 1822-371、X 2127+119、Her X-1 與 X1916-053 (胡欽評 2005),除此之外,SAX J1808.4-3658 的變化率也被我們測量出來。

Tavani 在 1991 年提出模型:如果伴星的 質量-半徑關係(mass-radius relation)可寫成 $R_2 \propto M_2^n$, 目伴星主星質量比小於 0.3 下, 則 為維持伴星時時處於洛希瓣充滿的狀態,其軌 道週期變化率為: $\frac{\dot{P}_{orb}}{P_{orb}} = (\frac{3}{2}n - \frac{1}{2})\frac{\dot{M}_2}{M_2}$ 。為了比 較我們觀測出來的週期變化率與理論值是否一 致,我們需知道 \dot{M}_2 與 M_2 之觀測值,Bildsten et al. (2001) 利用 1996 與 1998 年的爆發求出此 系統的 *M*2 平均值,他也假設物質由伴星流失 到主星是由於重力波輻射所引發的,因而求得 伴星為 $\dot{M}_2 \approx 0.05 M_{\odot}$ 棕矮星 (n = -1/3), 所以求 出的變化率為 $\dot{P}_{orb}/P_{orb} = 10^{-10} \text{ yr}^{-1}$,不過我們測 到的軌道週期變化量卻比標準模型預測的大了 兩個數量級,因此標準模型似乎對我們的測量 不成立。造成不成立的可能原因:(1)因為只 有量測到兩年的軌道週期,沒有更多的點讓我 們更精測軌道调期變化率值,因此我們量測的

値未達 2σ 信心水準。(2) 損失系統軌道角動量的機制除了重力波輻射外,還有磁制動

(Magnetic braking)等機制我們均未考慮,除 此之外,以上的推論均在物質量守恆的情況下 成立,如果有物質從此系統流失,那整體情況 會更加複雜。

4.2 利用吸積力矩估計距離:

對於 SAX J1808.4-3658 的距離, in 't Zand et al. (1998)利用第一型 X 光爆發算出為 4 kpc,隨後在 2001 年又修正為 2.5 kpc,我們可 以利用 1998 年量到的吸積力矩來求出距離之 下限與 in 't Zand 算出來結果來比較。

Ghosh et al. (1979, 1991) 對中子星吸積力 矩提出的模型中均說明:

$$\left|\tau\right| = \left|I\dot{\nu}\right| \le \dot{M}_1 \sqrt{GM_1 R_{co}} \tag{6}$$

$$L = 4\pi d^2 F = \frac{GM_1}{R} \dot{M}_1 \tag{7}$$

其中 τ 為吸積力矩,I 為中子星的轉動慣量 (moment of inertia), *M*1 為物質被吸積速率 (mass accretion rate), M_1 為中子星質量, R_{co} 為與中子星頻率同步的克卜勒軌道半徑,將(6) 式與(7)式整理,可得到距離的下限值 d \geq 10.7 kpc,所得到的距離下限明顯與實際觀測值(2.5 kpc)不合(大一個數量級),主要的差別是在 於我們測到的頻率變化率(10⁻¹² Hz s⁻¹)比理論 的值(10⁻¹⁴ Hz s⁻¹)大兩個數量級所造成。因此 吸積模型似乎對於太大(比典型的大兩個數量 級)的吸積力矩是不成立的。造成不成立的原 因第一個可能是此吸積力矩模型只適用於一般 的波霎,對於轉得更快的毫秒波霎而言,也許 需要考慮更複雜的機制,如同步半徑 R_{co} 約只 有數十公里,十分接近中子星表面,因此再考 慮磁場與吸積盤交互作用時,可能不能將中子 星單純的視為一個磁偶極,而必須加入更高階 (如四極)的效應。第二個為或許我們測量到 的相位變化並非吸積力矩所造成,而是因為波 霎的熱點(hot spot)在飄移而造成,因而造成 結果不符合一般模型。

5 結論:

本論文是利用 RXTE 對第一個被發現的吸 積驅動毫秒波霎 SAXJ1808.4-3658 分別在 1998、2000、2002 及 2005 四次爆發中所做的 觀測資料做分析,得到了三個主要的結果:

A、1998年與2002年最佳的自轉與軌道參 數:

我們先利用波霎做軌道運動所造成的都卜 勒效應先求得初步參數值,再把初步參數值代 入相位分析方法中以求得更精確的參數值,得 到的結果請見表一。

B、軌道週期變化率:

我們得到的 1998 年軌道週期為 7249.1558(9)s及2002年的為7249.158(1)s,其 結果並不一致,因此我們得到此系統的軌道週 期變化率:

$\dot{P}/P \sim (7\pm 4) \times 10^{-8} \text{ yr}^{-1}$

我們也把此觀測量和 Tavani(1991)提出的 LMXB 軌道週期變化率之理論值做比較,結果 並不一致,因此我們提出可能的原因為太少的 資料點與太短的的觀測時間(2000 年與 2005 年資料均無法測到脈衝),所以無法得到更精確 的軌道週期變化率值。除此之外,可能要考慮 磁制動與物質從此系統流失的更複雜機制。

C、吸積力矩

我們在 1998 年測到波霎的吸積力矩為:

$$\dot{v} = -3.15 \times 10^{-12} \,\mathrm{Hz \, s^{-1}}$$

利用此觀測值加上 Ghosh(1979)提出的吸積

力矩模型,我們可以得到此系統距離的下限値 比 in 't Zand (2001)所測到的值 d=2.5 kpc 大 一個數量級,其原因第一個可能為此模型只適 用於一般的波霎,對於轉的更快的毫秒波霎, 或許要考慮更複雜的機制。第二個是也許我們 測到的自轉頻率變化率並不是吸積力矩造成, 而是中子星熱點做飄移所造成。

參考文獻:

Bildsten et al. 2001, ApJ, 557, 292

- Bisnovatyi-Kogan, G. S. et al. 1974, Astron. Zh., 51
- Buccheri, R. et al. 1983, A&A, 128, 245

Chakrabarty, D. & Morgan, E. H. 1998, *Nature*, 394, 346

Chakrabarty, D. et al. 2003, Nature, 424, 42

- Deeter, J. E. et. al. 1991, ApJ, 383, 324
- Ghosh, P. & Lamb, F.K. 1979, ApJ, 234
- Ghosh, P. & Lamb, F.K. 1991, in *Neutron Stars: Theory and Observation*, 363
- Chou, Y. et al. 2001, ApJ, 549, 1135
- Hellier et al. 1990, MNRAS, 244, 39
- Hu, C.P., Chou, Y. 2005, JTAM, 3, 40
- in 't Zand, J. J. M. et al. 1998, A&A, 331, L25
- in 't Zand, J. J. M. et al. 2001, A&A, 372, 916
- Singh, N. S. et. al. 2002, A&A, 392, 161
- Tavani, M. 1991, Nature, 351,39
- Wijnands, R. & van der Klis, M. 1998, *Nature*, 394, 344
- Wijnands, R. et al. 2003, Nature, 424, 44
- Wolff, M. T. et. al. 2002, ApJ, 575, 384